词汇:sectional
adj. 部分的,节的;可组合的
相关场景
Group operators are a type of cross-sectional operator that compares stocks at a finer level, where the cross-sectional operation is applied within each group, rather than across the entire market. The group_rank operator allocates the stocks to their specified group, then within each group, it ranks the stocks based on their input value for data field x and returns an equally distributed number between 0.0 and 1.0.
This operator may help reduce both outliers and drawdown while reducing correlation.
Example: group_rank(x, subindustry);
The stocks are first grouped into their respective subindustry.
Within each subindustry, the stocks within that subindustry are ranked based on their input value for data field x and assigned an equally distributed number between 0.0 and 1.0.
>> Operators
>> Operators
集团运营商是一种横截面运营商,它在更精细的层面上比较股票,其中横截面操作适用于每个集团,而不是整个市场。group_rank运算符将股票分配到指定的组,然后在每个组内,它根据数据字段x的输入值对股票进行排名,并返回一个在0.0和1.0之间均匀分布的数字。此运算符可能有助于减少异常值和下跌,同时减少相关性。示例:group_rank(x,子行业)这些股票首先被归入各自的子行业。在每个子行业内,该子行业内的股票根据其数据字段x的输入值进行排名,并分配一个在0.0和1.0之间均匀分布的数字。
Instead of relying on the raw value of the ratio to decide weights of stocks, use cross-sectional operators. Utilize group based operators to compare across similar stocks.
>> worldquantbrain_4_program
>> worldquantbrain_4_program
与其依赖比率的原始值来决定股票的权重,不如使用横截面运算符。利用基于集团的运营商对类似股票进行比较。
PV: price-volume
subtraction or division;
Time Series: ts_rank()
Cross-Sectional: rank()
operating_income / cap / ebitda / enterprise_value .
>> worldquantbrain
subtraction or division;
Time Series: ts_rank()
Cross-Sectional: rank()
operating_income / cap / ebitda / enterprise_value .
>> worldquantbrain
The appropriate operator can vary depending on the situation. Time Series operators might be more appropriate when companies have different scales making cross-sectional comparison difficult. However, for model data where company metrics are already adjusted, Cross-sectional operators might be more suitable.
>> worldquantbrain
>> worldquantbrain
合适的操作员可以根据情况而变化。当公司规模不同,难以进行横断面比较时,时间序列运算符可能更合适。然而,对于公司指标已经调整的模型数据,横截面运算符可能更合适。
The following diagram illustrates this concept. For calculations based on Company1 on January 10, 2020, the red-marked area represents the data used for time series calculations, while the green-marked area represents the data used for cross-sectional calculations.
>> worldquantbrain
>> worldquantbrain
下图说明了这一概念。对于基于2020年1月10日Company1的计算,红色标记的区域表示用于时间序列计算的数据,而绿色标记的区域则表示用于横截面计算的数据。
Let's imagine that the student's classmates scored around 90 points on this test. From a comparative perspective, it might be hard to say they achieved an excellent score.
Similarly, Cross-Sectional operators resemble this second method of comparing with other students' current test scores.
>> worldquantbrain
>> worldquantbrain
让我们想象一下,这个学生的同学在这次考试中得了大约90分。从比较的角度来看,很难说他们取得了优异的成绩。同样,横截面运算符类似于与其他学生当前考试成绩进行比较的第二种方法。
Cross-sectional operators compare or process values across target stocks at a specific point in time. For example, rank(x) orders x values at a specific time and distributes them from 0 to 1.
>> worldquantbrain
>> worldquantbrain
横截面运算符在特定时间点比较或处理目标股票的值。例如,rank(x)在特定时间对x值进行排序,并将其从0分布到1。